Approximate solution of boundary integral equations for biharmonic problems in non-smooth domains
نویسندگان
چکیده
This paper deals with approximate solutions to integral equations arising in boundary value problems for the biharmonic equation in simply connected piecewise smooth domains. The approximation method considered demonstrates excellent convergence even in the case of boundary conditions discontinuous at corner points. In an application we obtain very accurate approximations for some characteristics of two-dimensional Stokes flow in non-smooth domains.
منابع مشابه
Numerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملBoundary Integral Operators for Plate Bending in Domains with Corners
The paper studies boundary integral operators of the bi{Laplacian on piecewise smooth curves with corners and describes their mapping properties in the trace spaces of variational solutions of the biharmonic equation. We formulate a direct integral equation method for solving mixed boundary value problems for the biharmonic equation on a nonsmooth plane domain, analyse the solvability of the co...
متن کاملDiscrete weighted least-squares method for the Poisson and biharmonic problems on domains with smooth boundary
In this article a discrete weighted least-squares method for the numerical solution of elliptic partial differential equations exhibiting smooth solution is presented. It is shown how to create well-conditioned matrices of the resulting system of linear equations using algebraic polynomials, carefully selected matching points and weight factors. Two simple algorithms generating suitable matchin...
متن کاملApproximate solution of the stochastic Volterra integral equations via expansion method
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...
متن کامل